The Eucalyptus grandis Genome Project: Genome and transcriptome resources for comparative analysis of woody plant biology

نویسندگان

  • Alexander Myburg
  • Dario Grattapaglia
  • Gerald Tuskan
  • Jerry Jenkins
  • Jeremy Schmutz
  • Eshchar Mizrachi
  • Charles Hefer
  • Georgios Pappas
  • Lieven Sterck
  • Yves Van De Peer
  • Richard Hayes
  • Daniel Rokhsar
چکیده

Background The International Year of Forests 2011 [http://www. un.org/en/events/iyof2011/] will be a milestone for forest tree genomics. The draft genome sequence of Eucalyptus grandis was released in January 2011 in the USA (Phytozome [http://www.phytozome.net]) and in Belgium (BOGAS, [http://bioinformatics.psb.ugent.be/webtools/bogas/]). The genome sequencing was funded by the US Department of Energy (DOE) and performed at the DOE Joint Genome Institute (JGI) in collaboration with members of the Eucalyptus Genome Network (EUCAGEN, [http://www.eucagen.org]) who contributed genetic materials, linkage maps, EST resources and bioinformatics support. The E. grandis genome together with that of Populus trichocarpa[1]and other woody plant genomes recently completed (e.g. Vitis, Cacao, Prunus, Citrus and Malus)will provide excellent opportunities for comparative studies of the unique biology of woody plants. Eucalypts are currently the most widely grown hardwood fibre crop in the world and eucalypt breeding programs will benefit greatly from the new genomic resources. The reference genome sequence of Eucalyptus, a foundation tree genus in Australia comprising more than 70% of the native forest estate, will also offer important benefits for ecological and evolutionary biology studies. We report the sequencing, assembly and annotation of the E. grandis genome. Genome sequencing and assembly Whole-genome (8X) shotgun sequencing was performed for a partially inbred (S1), 17-year-old tree of E. grandis (est. genome size 640 Mbp, n = 11), BRASUZ1 (Suzano, Brazil). A total of 7.7 million Sanger reads (5.4 Gbp) were produced from plasmid, fosmid and BAC libraries. An inbred genotype was selected to circumvent perceived problems with the assembly of a highly heterozygous eucalypt genome. However, microsatellite genotyping showed that BRASUZ1 was much less homozygous than expected, with large parts of the genome remaining heterozygous presumably due to viability selection. This finding was confirmed during the assembly of the S1 genome approximately 25% of the assembly occurred in two haplotypes of 3-4X coverage, while the remainder of the genome assembled into a single haplotype of 6-7X coverage. Linkage maps with over 2400 DArT and microsatellite markers were subsequently used as a framework for the assembly of 11 large chromosome scaffolds. The chromosome scaffolds contained 88% (605 Mbp) of the draft assembly, with the remainder of the assembly sequence (85 Mbp) in 4941 smaller scaffolds. Based on similarity searches with 1.6 million ESTs from BRASUZ1, it was estimated that 96% of expressed gene loci were included in the 11 chromosome assemblies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic comparative and expression analysis of genes encoding dof transcription factors from Eucalyptus grandis

Dof proteins are a family of transcription factors specific to the plant kingdom that contain a particular class of zinc finger DNA binding domain. Members of this family are involved in the regulation of genes related to a plethora of metabolic processes including stress or hormone response, seed and endosperm development, flowering, carbohydrate metabolism, and cell or tissue specificity. Dof...

متن کامل

In silico comparative analysis of glycoside hydrolase (GH) family 10 endo-(1-4)-beta-xylanase genes from Eucalyptus grandis and Arabidopsis thaliana

Background The hemicellulose xylan constitutes the major non-cellulosic component of plant secondary cell walls. It has been shown that xylan adsorbs to cellulose fibres and also covalently binds a carbon moiety of lignin [1,2]. Eucalyptus is an important hardwood tree genus used in the pulp and paper industry and has potential as biofuel feedstock. Xylan removal is expensive and uses environme...

متن کامل

Genome-wide analysis of EgEVE_1, a transcriptionally active endogenous viral element associated to small RNAs in Eucalyptus genomes

Endogenous viral elements (EVEs) are the result of heritable horizontal gene transfer from viruses to hosts. In the last years, several EVE integration events were reported in plants by the exponential availability of sequenced genomes. Eucalyptus grandis is a forest tree species with a sequenced genome that is poorly studied in terms of evolution and mobile genetic elements composition. Here w...

متن کامل

Plant scientists celebrate new woody plant genome.

Our friends often remind us that scientists are strange beasts. As such, it is fitting that we should rejoice at the release of a major new genome by further scholarship and analysis – using the genome to unravel new elements of plant physiology and evolution. In this Feature Issue we celebrate the completion of the genome of Eucalyptus grandis (Myburg et al., 2014), the first representative of...

متن کامل

Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis

Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to exami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011